Quantum Wave in a Box PC 용

다운로드 Quantum Wave in a Box PC 용

에 의해 게시 에 의해 게시 Michel Ramillon

  • 출시일: 2023-01-08
  • 카테고리: Education
  • 다운로드: $2.99
  • 현재 버전: 1.0.3
  • 파일 크기: 14.83 MB
  • 호환성: Windows 11/Windows 10/8/7/Vista

다운로드 ⇩
평점:

4.0/5
4
보낸 사람 3 평점

★ ★ ★ 에디터의 리뷰

1. - Watch both solution ψ(x,t) and free wave-packet curves evolve together in time and separate when entering non-zero potential energy region.

2. The solution ψ(x,t) of the time-dependent Schrödinger equation is then computed as ψ(x,t) = exp(-iHt) ψ₀(x) where ψ₀(x) is a gaussian wave-packet at initial time t = 0.

3. - Change initial gaussian parameters of the wave-packet (position, group velocity, standard deviation), enter any time value, then tap refresh button to observe changes in curves without new diagonalization.

4. - Spatially continuous problem discretized over [a, b] and time-independent Schrödinger equation represented by a system of N+1 linear equations using a 3, 5 or 7 point stencil; N being the number of x-steps.

5. - Animation shows gaussian wave-packet ψ(x,t) evolving with real-time evaluation of average velocity, kinetic energy and total energy.

6. A solution of this differential equation represents the motion of a non-relativistic particle in a potential energy field V(x).

7. The time-independent Schrödinger equation H ψ(x) = E ψ(x), represented by a set of linear equations, is solved by using quick diagonalization routines.

8. - Quantum system defined by mass, interval [a, b] representing the Box and (real) potential energy V(x).

9. In Quantum Mechanics the one-dimensional Schrödinger equation is a fundamental academic though exciting subject of study for both students and teachers of Physics.

10. This is particularly useful to get a (usually more precise) solution for any time value t when animation is slower in cases of N being large.

11. Actually the originally continuous x-spatial differential problem is discretized over a finite interval (the Box) while time remains a continuous variable.



스크린 샷

       


다운로드 및 설치 방법 Quantum Wave in a Box 귀하의 PC 및 Mac에서


호환되는 PC 앱 또는 대안 확인


다운로드 평점 개발자
Quantum Wave in a Box 앱 또는 대안 다운로드 ↲ 3
4.00
Michel Ramillon

또는 아래 가이드를 따라 PC에서 사용하십시오. :



PC 버전 선택:

  1. Windows 10
  2. Windows 11

소프트웨어 설치 요구 사항:

1 단계 : PC 및 Mac 용 Android 에뮬레이터 다운로드

직접 다운로드 가능합니다. 아래 다운로드 :

  1. Nox »
  2. Bluestacks »

2 단계 : PC 또는 Mac에 에뮬레이터 설치


3 단계 : Quantum Wave in a Box PC의 경우 - Windows 7/8 / 10 / 11

설치 한 에뮬레이터 애플리케이션을 열고 검색 창을 찾으십시오. 일단 찾았 으면 Quantum Wave in a Box 검색 막대에서 검색을 누릅니다. 클릭 Quantum Wave in a Box응용 프로그램 아이콘. 의 창 Quantum Wave in a Box Play 스토어 또는 앱 스토어의 스토어가 열리면 에뮬레이터 애플리케이션에 스토어가 표시됩니다. Install 버튼을 누르면 iPhone 또는 Android 기기 에서처럼 애플리케이션이 다운로드되기 시작합니다. 이제 우리는 모두 끝났습니다.
"모든 앱 "아이콘이 표시됩니다.
클릭하면 설치된 모든 응용 프로그램이 포함 된 페이지로 이동합니다.
당신은 아이콘을 클릭하십시오. 그것을 클릭하고 응용 프로그램 사용을 시작하십시오.


PC 용 호환 APK 받기


다운로드 개발자 평점 현재 버전
다운로드 PC 용 APK » Michel Ramillon 4.00 1.0.3


다운로드 Quantum Wave in a Box Mac OS의 경우 (Apple)

다운로드 개발자 리뷰 평점
$2.99 Mac OS의 경우 Michel Ramillon 3 4.00

Windows 11용으로 가져오기


PC를 설정하고 Windows 11에서 Quantum Wave in a Box 앱을 다운로드하는 단계:

  1. 컴퓨터가 호환되는지 확인: 최소 요구 사항은 다음과 같습니다.
    • RAM: 8GB (최저한의), 16GB (추천)
    • 저장: SSD
    • Processor:
      • Intel Core i3 8th Gen (최소 이상)
      • AMD Ryzen 3000 (최소 이상)
      • Qualcomm Snapdragon 8c (최소 이상)
    • Processor Architecture: x64 or ARM64
  2. Quantum Wave in a Box 에 이미 기본 Windows 버전이 있는지 확인하십시오. 여기서 하세요 ». 기본 버전이 없으면 3단계로 진행합니다.
더 읽기 » »


기능 및 설명

Schrödinger equation solver 1D. User defined potential V(x). Diagonalization of hamiltonian matrix. Animation showing evolution in time of a gaussian wave-packet. In Quantum Mechanics the one-dimensional Schrödinger equation is a fundamental academic though exciting subject of study for both students and teachers of Physics. A solution of this differential equation represents the motion of a non-relativistic particle in a potential energy field V(x). But very few solutions can be derived with a paper and pencil. Have you ever dreamed of an App which would solve this equation (numerically) for each input of V(x) ? Give you readily energy levels and wave-functions and let you see as an animation how evolves in time a gaussian wave-packet in this particular interaction field ? Quantum Wave in a Box does it ! For a large range of values of the quantum system parameters. Actually the originally continuous x-spatial differential problem is discretized over a finite interval (the Box) while time remains a continuous variable. The time-independent Schrödinger equation H ψ(x) = E ψ(x), represented by a set of linear equations, is solved by using quick diagonalization routines. The solution ψ(x,t) of the time-dependent Schrödinger equation is then computed as ψ(x,t) = exp(-iHt) ψ₀(x) where ψ₀(x) is a gaussian wave-packet at initial time t = 0. You enter V(x) as RPN expression, set values of parameters and will get a solution in many cases within seconds ! - Atomic units used throughout (mass of electron = 1) - Quantum system defined by mass, interval [a, b] representing the Box and (real) potential energy V(x). - Spatially continuous problem discretized over [a, b] and time-independent Schrödinger equation represented by a system of N+1 linear equations using a 3, 5 or 7 point stencil; N being the number of x-steps. Maximum value of N depends on device’s RAM: up to 4000 when computing eigenvalues and eigenvectors, up to 8000 when computing eigenvalues only. - Diagonalization of hamiltonian matrix H gives eigenvalues and eigenfunctions. When computing eigenvalues only, lowest energy levels of bound states (if any) with up to 10-digit precision. - Listing of energy levels and visualisation of eigenwave-functions. - Animation shows gaussian wave-packet ψ(x,t) evolving with real-time evaluation of average velocity, kinetic energy and total energy. - Toggle between clockwise and counter-clockwise evolution of ψ(x,t). - Watch Real ψ, Imag ψ or probability density |ψ|². - Change initial gaussian parameters of the wave-packet (position, group velocity, standard deviation), enter any time value, then tap refresh button to observe changes in curves without new diagonalization. This is particularly useful to get a (usually more precise) solution for any time value t when animation is slower in cases of N being large. - Watch both solution ψ(x,t) and free wave-packet curves evolve together in time and separate when entering non-zero potential energy region. - Zoom in and out any part of the curves and watch how ψ(x,t) evolve locally.



추가 응용 프로그램 Michel Ramillon





최고의 앱 - Education